3.2892 \(\int \frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{(1-2 x)^{3/2}} \, dx\)

Optimal. Leaf size=155 \[ \frac{4817 \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ),\frac{35}{33}\right )}{250 \sqrt{33}}+\frac{\sqrt{5 x+3} (3 x+2)^{5/2}}{\sqrt{1-2 x}}+\frac{9}{5} \sqrt{1-2 x} \sqrt{5 x+3} (3 x+2)^{3/2}+\frac{419}{50} \sqrt{1-2 x} \sqrt{5 x+3} \sqrt{3 x+2}+\frac{7279}{125} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

[Out]

(419*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/50 + (9*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/5 + ((2 +
 3*x)^(5/2)*Sqrt[3 + 5*x])/Sqrt[1 - 2*x] + (7279*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])
/125 + (4817*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(250*Sqrt[33])

________________________________________________________________________________________

Rubi [A]  time = 0.0458242, antiderivative size = 155, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {97, 154, 158, 113, 119} \[ \frac{\sqrt{5 x+3} (3 x+2)^{5/2}}{\sqrt{1-2 x}}+\frac{9}{5} \sqrt{1-2 x} \sqrt{5 x+3} (3 x+2)^{3/2}+\frac{419}{50} \sqrt{1-2 x} \sqrt{5 x+3} \sqrt{3 x+2}+\frac{4817 F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{250 \sqrt{33}}+\frac{7279}{125} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((2 + 3*x)^(5/2)*Sqrt[3 + 5*x])/(1 - 2*x)^(3/2),x]

[Out]

(419*Sqrt[1 - 2*x]*Sqrt[2 + 3*x]*Sqrt[3 + 5*x])/50 + (9*Sqrt[1 - 2*x]*(2 + 3*x)^(3/2)*Sqrt[3 + 5*x])/5 + ((2 +
 3*x)^(5/2)*Sqrt[3 + 5*x])/Sqrt[1 - 2*x] + (7279*Sqrt[11/3]*EllipticE[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])
/125 + (4817*EllipticF[ArcSin[Sqrt[3/7]*Sqrt[1 - 2*x]], 35/33])/(250*Sqrt[33])

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 154

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 158

Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol]
 :> Dist[h/f, Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Dist[(f*g - e*h)/f, Int[1/(Sqrt[a + b*
x]*Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] &&
 SimplerQ[c + d*x, e + f*x]

Rule 113

Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-((b*e
 - a*f)/d), 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-((b*c - a*d)/d), 2]], (f*(b*c - a*d))/(d*(b*e - a*f))])/b, x
] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] &&  !LtQ[-((b*c - a*d)/d),
 0] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[-(d/(b*c - a*d)), 0] && GtQ[d/(d*e - c*f), 0] &&  !LtQ[(b*c - a*d)
/b, 0])

Rule 119

Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*Rt[-(b/d
), 2]*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-(b/d), 2]*Sqrt[(b*c - a*d)/b])], (f*(b*c - a*d))/(d*(b*e - a*f))])/(
b*Sqrt[(b*e - a*f)/b]), x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] &
& PosQ[-(b/d)] &&  !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-(d/b), 0]) &&  !(SimplerQ[c +
 d*x, a + b*x] && GtQ[(-(b*e) + a*f)/f, 0] && GtQ[-(f/b), 0]) &&  !(SimplerQ[e + f*x, a + b*x] && GtQ[(-(d*e)
+ c*f)/f, 0] && GtQ[(-(b*e) + a*f)/f, 0] && (PosQ[-(f/d)] || PosQ[-(f/b)]))

Rubi steps

\begin{align*} \int \frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{(1-2 x)^{3/2}} \, dx &=\frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{\sqrt{1-2 x}}-\int \frac{(2+3 x)^{3/2} \left (\frac{55}{2}+45 x\right )}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=\frac{9}{5} \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}+\frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{\sqrt{1-2 x}}+\frac{1}{25} \int \frac{\left (-\frac{3875}{2}-\frac{6285 x}{2}\right ) \sqrt{2+3 x}}{\sqrt{1-2 x} \sqrt{3+5 x}} \, dx\\ &=\frac{419}{50} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{9}{5} \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}+\frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{\sqrt{1-2 x}}-\frac{1}{375} \int \frac{\frac{276495}{4}+109185 x}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx\\ &=\frac{419}{50} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{9}{5} \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}+\frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{\sqrt{1-2 x}}-\frac{4817}{500} \int \frac{1}{\sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}} \, dx-\frac{7279}{125} \int \frac{\sqrt{3+5 x}}{\sqrt{1-2 x} \sqrt{2+3 x}} \, dx\\ &=\frac{419}{50} \sqrt{1-2 x} \sqrt{2+3 x} \sqrt{3+5 x}+\frac{9}{5} \sqrt{1-2 x} (2+3 x)^{3/2} \sqrt{3+5 x}+\frac{(2+3 x)^{5/2} \sqrt{3+5 x}}{\sqrt{1-2 x}}+\frac{7279}{125} \sqrt{\frac{11}{3}} E\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )+\frac{4817 F\left (\sin ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )|\frac{35}{33}\right )}{250 \sqrt{33}}\\ \end{align*}

Mathematica [A]  time = 0.198394, size = 110, normalized size = 0.71 \[ \frac{14665 \sqrt{2-4 x} \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right ),-\frac{33}{2}\right )-30 \sqrt{3 x+2} \sqrt{5 x+3} \left (90 x^2+328 x-799\right )-29116 \sqrt{2-4 x} E\left (\sin ^{-1}\left (\sqrt{\frac{2}{11}} \sqrt{5 x+3}\right )|-\frac{33}{2}\right )}{1500 \sqrt{1-2 x}} \]

Antiderivative was successfully verified.

[In]

Integrate[((2 + 3*x)^(5/2)*Sqrt[3 + 5*x])/(1 - 2*x)^(3/2),x]

[Out]

(-30*Sqrt[2 + 3*x]*Sqrt[3 + 5*x]*(-799 + 328*x + 90*x^2) - 29116*Sqrt[2 - 4*x]*EllipticE[ArcSin[Sqrt[2/11]*Sqr
t[3 + 5*x]], -33/2] + 14665*Sqrt[2 - 4*x]*EllipticF[ArcSin[Sqrt[2/11]*Sqrt[3 + 5*x]], -33/2])/(1500*Sqrt[1 - 2
*x])

________________________________________________________________________________________

Maple [C]  time = 0.016, size = 145, normalized size = 0.9 \begin{align*} -{\frac{1}{45000\,{x}^{3}+34500\,{x}^{2}-10500\,x-9000}\sqrt{1-2\,x}\sqrt{2+3\,x}\sqrt{3+5\,x} \left ( 14665\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticF} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -29116\,\sqrt{2}\sqrt{3+5\,x}\sqrt{2+3\,x}\sqrt{1-2\,x}{\it EllipticE} \left ( 1/11\,\sqrt{66+110\,x},i/2\sqrt{66} \right ) -40500\,{x}^{4}-198900\,{x}^{3}+156390\,{x}^{2}+396390\,x+143820 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2+3*x)^(5/2)*(3+5*x)^(1/2)/(1-2*x)^(3/2),x)

[Out]

-1/1500*(2+3*x)^(1/2)*(3+5*x)^(1/2)*(1-2*x)^(1/2)*(14665*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*Ell
ipticF(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-29116*2^(1/2)*(3+5*x)^(1/2)*(2+3*x)^(1/2)*(1-2*x)^(1/2)*EllipticE
(1/11*(66+110*x)^(1/2),1/2*I*66^(1/2))-40500*x^4-198900*x^3+156390*x^2+396390*x+143820)/(30*x^3+23*x^2-7*x-6)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{\frac{5}{2}}}{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)*(3+5*x)^(1/2)/(1-2*x)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(5*x + 3)*(3*x + 2)^(5/2)/(-2*x + 1)^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (9 \, x^{2} + 12 \, x + 4\right )} \sqrt{5 \, x + 3} \sqrt{3 \, x + 2} \sqrt{-2 \, x + 1}}{4 \, x^{2} - 4 \, x + 1}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)*(3+5*x)^(1/2)/(1-2*x)^(3/2),x, algorithm="fricas")

[Out]

integral((9*x^2 + 12*x + 4)*sqrt(5*x + 3)*sqrt(3*x + 2)*sqrt(-2*x + 1)/(4*x^2 - 4*x + 1), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)**(5/2)*(3+5*x)**(1/2)/(1-2*x)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{5 \, x + 3}{\left (3 \, x + 2\right )}^{\frac{5}{2}}}{{\left (-2 \, x + 1\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((2+3*x)^(5/2)*(3+5*x)^(1/2)/(1-2*x)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(5*x + 3)*(3*x + 2)^(5/2)/(-2*x + 1)^(3/2), x)